Testing out the stories collection.

Cras mattis consectetur purus sit amet fermentum. Maecenas sed diam eget risus varius blandit sit amet non magna. Donec ullamcorper nulla non metus auctor fringilla. Aenean eu leo quam. Pellentesque ornare sem lacinia quam venenatis vestibulum. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus.

Data Visualization

Quarto works well with library(urbnthemes) – the Urban Institute’s R data visualization theme.

Consider an examples using the cars dataset, which contains speed and dist for 50. ?@fig-histogram shows two histograms displaying the distributions of speed and dist individually.

ggplot(cars, aes(x = speed)) +
  geom_histogram(bins = 15) +
  labs(title = "Histogram of speeds")

ggplot(cars, aes(x = dist)) +
  geom_histogram(bins = 15) +
  labs(title = "Histogram of distances")

Figure 1: Histogram of speeds

Figure 2: Histogram of dists

Histograms of individual variables

Data Tables

The default for df-print is kable. This is the only type of table that works with the table references. kable works well until there is tons of data, where paged thrives.

Table 1 displays basic summary statistics for these two variables.

cars %>%
  summarise(
    `Median speed` = median(speed),
    `IQR speed` = IQR(speed),
    `Median dist` = median(dist),
    `IQR dist` = IQR(dist),
    `Correlation, r` = cor(speed, dist)
  ) %>%
  kable(digits = c(0, 0, 0, 0, 2))
Median speed IQR speed Median dist IQR dist Correlation, r
15 7 36 30 0.81

Table 1: Summary statistics for speed and dist (kable)

Diagrams

Quarto has access to Mermaid and Graphviz for creating diagrams. Here is a simple example from the Quarto documentation:

flowchart LR
  A[Hard edge] --> B(Round edge)
  B --> C{Decision}
  C --> D[Result one]
  C --> E[Result two]

Graphviz

Equations

First Model

We can fit a simple linear regression model of the form shown in Equation 1.

dist = \hat{\beta}_0 + \hat{\beta}_1 \times speed + \epsilon
\qquad(1)

Table 2 shows the regression output for this model.

dist_fit <- lm(dist ~ speed, data = cars)
  
dist_fit %>%
  tidy() %>%
  kable(digits = c(0, 0, 2, 2, 2))
term estimate std.error statistic p.value
(Intercept) -18 6.76 -2.60 0.01
speed 4 0.42 9.46 0.00

Table 2: Linear regression model for predicting price from area

Second Model

Let’s fit a more complicated multiple linear regression model of the form shown in Equation 2.

dist = \hat{\beta}_0 + \hat{\beta}_1 \times speed + \hat{\beta}_2 \times speed ^ 2 + \epsilon
\qquad(2)

Table 3 shows the regression output for this model.

dist_fit2 <- lm(dist ~ poly(speed, degree = 2, raw = TRUE), data = cars)
  
dist_fit2 %>%
  tidy() %>%
  kable(digits = c(0, 0, 2, 2, 2))
term estimate std.error statistic p.value
(Intercept) 2 14.82 0.17 0.87
poly(speed, degree = 2, raw = TRUE)1 1 2.03 0.45 0.66
poly(speed, degree = 2, raw = TRUE)2 0 0.07 1.52 0.14

Table 3: Second linear regression model for predicting price from area

Outset content…

knitr::kable(
  mtcars[1:6, 1:10]
)
mpg cyl disp hp drat wt qsec vs am gear
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3
More Stories
test

Pentagonal Perpetual Parabolas

Elit nihil qui dolorum sed assumenda possimus veritatis pariatur dolorum nisi. Ipsum quidem officiis obcaecati reprehenderit amet.

dogs cats
test

Forth the Fickled Favor

Ipsum eos repellendus natus mollitia dolores dolor aut? In ullam similique ducimus labore sed Magni totam veniam.

dogs zebras